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Note 

More on the Calculation of 
Oscillatory Integrals 

The numerical evaluation of integrals of the type 

J 
.* 

g(t) cos (2 dt (1) 
n 

(with emphasis on large values of 4) was the subject of a recent paper by Boris and 
Oran [ 11. In this note, we shall show that the application of the Poisson summation 
formula leads to an even simpler algorithm for the numerical computation of such 
integrals, and, in addition, provides a priori estimates of the error which would 
otherwise be unavailable. 

The form of Poisson’s formula which is applicable to integrals of type (1) is [2] 

! .mf(t)dt=h[~f(0)+j”(h)+f(2h)+...+]-- 2 F(F), (2) 
0 k=I 

where h is an arbitrary positive quantity, and F(y) is the Fourier cosine transform 
of f(t): 

F(y) = j,” f(t) cos yt dt. (3) 

(For additional applications, see [3, 5, 61.) In particular, iff(t) is an even function 
which tends exponentially to zero as t + co, the transform function F(y) also 
vanishes exponentially as y -+ co (i.e., as h + 0). In this instance, the error in approx- 
imating the integral in Eq. (2) by the first infinite sum of the R.H.S. can be deter- 
mined essentially from the magnitude of F(27r/h), and this, because of the property of 
F(y) just noted, can be made arbitrarily small by taking h sufficiently small. If, in 
addition, the asymptotic behavior of F(y) for large y is known, an a priori estimate of 
the value of h necessary to obtain a prescribed accuracy is available. 

For integrals of type (l),f(t) in Eq. (3) is replaced by 

g(t) cm 0, 
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and Eq. (2) modified to read 

1 ‘O” g(t) cos Ct dc = h [ $ g(0) + g(h) cos(Ch) + g(2h) cos(2Ch) + .a* +] 
0 

- 
f [G(?+i)+~($k)], 
k=l 

(4) 

where G(y) is now the Fourier transform of g(t) as defined by analogy to Eq. (3). 
Now when h is small and 2x/h s [, the magnitude of G((2n/h) - [) will dominate 

that of G((2n/h) + C), so that the magnitude of the error term which, as noted above, 
is essentially that of the Iirst term of the series, can be estimated by that of 

G(P/h) - 0 (5) 

The two examples in [l] can be used to illustrate this. In the first of these, we have 

g(t) = (cash xt) - ’ (6) 

and 
G(y) = n/2x cosh(rry/2x). (7) 

Hence the error estimate is 

E(h) s n/2x cosh(@x)((2n/h) - C) < (x/x) e”“‘2”e-“Z’“h, (8) 

which, with x = 2 and c = 4, becomes 

E(h) z 36.35 e-n2’2h. (9) 

A convenient chaise of h is n/m, where m is an integer; this causes the integrand to 
be evaluated at integral subdivisions of rr. In particular, if m is even, two of the 
evaluation points in each cycle will occur when Cf = n/2 + kn, 3x//2 + kn,..., at which 
points the integrand will be zero. The value h = x/16, for example, leads to the error 
estimate 

E(7r/l6) g 4.42 x lo- lo, (10) 

which is in agreement with the results of [ 1, Table I, N = 41. (Note that, although the 
value N = 4 would normally imply 8 evaluations per cycle, the number of actual 
evaluations is only 6, for the reason given above.) 

In the second example, 

g(t) = e-xcosht, G(y) = jom e -xcosh’ cos yt dt = K,(x), 

which, for large y has the asymptotic behavior 

G(y) gg e-(n’2)“, (12) 
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so that an estimate of the error is 

E(h) z e- (n/Z)((Wh)-I) (13) 

(For more precise estimates, see [4].) Since, in this example, C is large, h must be 
chosen sufficiently small so that 2x/h % C. Also, since the magnitude of the integral 
will be correspondingly small, the number of decimal places in the error term will not 
be a true indication of the number of correct significant figures obtained. In such 
cases, it is preferable, therefore, to have an estimate of the relative error 

E,(h) = @/2)YE(h) g e-nWh)-S)a (14) 

With c= 39, the choice h = x/78 leads to a relative error estimate of 6 x 10ms4, 
which far exceeds any accuracy which would normally be needed (or even 
attainable), but it is indicative of the high degree of accuracy that can be obtained for 
such integrals. 

In the example, the magnitude of the integral itself, as estimated by the asymptotic 
behavior given by Eq. (12), differs from that of the largest ordinate (at t = 0) by 
approximately lo-*. This means that there will be a loss of at least the first 8 figures 
due to cancellation of positive and negative quantities in the summation. This 
cancellation must be compensated for by a sufficiently high degree of precision in the 
calculations. The following computations were carried out for the second example on 

TABLE I 

Evaluation of K&x) by Numerical Integration; x = 40, [ = 39 

t e-rcosh’ cos ct x 10” 

(3 0 2.12417 71276 458 
R/39 -3.73102 74327642 

2R39 2.5251400847368 

3R/39 -1.3136845258740 
4R/39 0.5231217291798 

5R/39 -0.1584981755 149 
6R/39 0.03625 67429034 

7R/39 -0.0062020756051 
8~139 0.0007843147 193 

9R/39 -0.0000723466183 
lOR/39 0.0000047929242 

11R/39 -0.OOOOO02240 701 
12~139 O.OOOOOOOO72466 

13R/39 -O.OOOOO 00001 586 
14R/39 O.OOOOOOOOOO023 

Sum 5.2094847993583 -5.2094847806053 

Note. Ksgi(40) E (n/78) x (1.87530 x 10mz6) = 7.5531 x lo-*‘. 
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the Lawrence Livermore Laboratory CDC-7600 computer, using both 14 and 26 
digit arithmetic. With 14 digits, and knowing that the terminal figures in the inter- 
mediate calculations are subject to round off and/or truncation, the final value should 
be correct to at least 5 figures. This is borne out by the second set of results, where 
17 correct figures remain after cancellation. (There would actually be over 40 correct 
figures, if a sufficient number of digits were available in the arithmetic package.) 
Numerical details are given in Table I for the 14 digit arithmetic. The final results for 
both sets are, with x = 40, [ = 39, 

K&) z 7.5531 x 1o-28 (14 digits), 

Kit(x) r 7.553 05218 79261 x lo-** (26 digits). 

(Note that, in this example, it is only necessary to evaluate the integrand at two 
points/cycle, and that these occur when t = 0, kzf39, k = 1, 2,..., where the value of 
the cosine is either + 1 (k even) or -1 (k odd).) 

The above results may be compared with the value 

I&(x) 2 7.553054 x lo-** 

obtained in [l] with both two and four points/cycle. (The random behavior of the 
terminal digits in [ 1;Table II, column 41 leads one to suspect that all of them are 
unreliable due to round off or truncation, since, as noted above, the integration 
interval (n/78) assures at least 17 correct figures in the final answer, provided the 
arithmetic package which is used contains a sufficient number of working digits.) 
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